资源类型

期刊论文 27

会议视频 1

年份

2023 7

2022 1

2021 11

2020 4

2019 1

2018 2

关键词

二硫化铼;可饱和吸收体;二维材料;调Q光纤激光器 1

武器系统;基于过程的建模(PBM);作战场景;交互分析;元模型;Petri网 1

矢量孤子;类噪声脉冲;MXene;光纤激光器 1

绿色化工 1

检索范围:

排序: 展示方式:

Toughening of vinyl ester resins by two-dimensional MXene nanosheets

《化学科学与工程前沿(英文)》   页码 1651-1658 doi: 10.1007/s11705-022-2208-5

摘要: Two-dimensional nanosheets are highly effective tougheners for vinyl ester resins. The toughening effect is related to the high specific surface area and unique two-dimensional planar structure of the nanosheets. In this study, a coupling agent γ-(2,3-epoxypropoxy) propytrimethoxysilane (Kh-560) was used to modify MXene nanosheets (M-MXene) for use in toughening vinyl ester resin. The mechanical properties, including the tensile strength, flexural strength, Young’s modulus and elongation, of neat vinyl ester resin and vinyl ester resin modified with MXene and M-MXene were investigated. The results showed that modification significantly improved the mechanical properties of the vinyl ester resin. The tensile and flexural strengths of the MXene-nanosheet-modified vinyl ester resin were 27.20% and 25.32% higher, respectively, than those of the neat vinyl ester resin. The coupling agent improved the interfacial compatibility between the MXene nanosheets and vinyl ester resin, which resulted in the tensile and flexural strengths of the M-MXene-nanosheet-modified vinyl ester resin being 52.57% and 54.60% higher, respectively, than those of the neat vinyl ester resin for a loading quantity of nanosheets of only 0.04 wt %, which is economically viable. The main mechanisms by which the nanosheets toughen the resin are crack deflection and crack pinning.

关键词: MXene nanosheets     2D material     vinyl ester resin     modification     coupling agent    

Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention

Jianzhong Ma,Li Ma,Lei Zhang,Wenbo Zhang,Qianqian Fan,Buxing Han,

《工程(英文)》 doi: 10.1016/j.eng.2023.06.005

摘要: This study presents a solvent-free, facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin (MV) using vanillin. The resulting MV not only imparted antibacterial properties to coatings layered on leather, but could also be employed as a green alternative to petroleum-based carcinogen styrene (St). Herein, MV was copolymerized with butyl acrylate (BA) to obtain waterborne bio-based P(MV–BA) miniemulsion via miniemulsion polymerization. Subsequently, MXene nanosheets with excellent photothermal conversion performance and antibacterial properties, were introduced into the P(MV–BA) miniemulsion by ultrasonic dispersion. During the gradual solidification of P(MV–BA)/MXene nanocomposite miniemulsion on the leather surface, MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene, which prompted its full exposure to light and bacteria, exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy. In particular, when the dosage of MXene nanosheets was 1.4 wt%, the surface temperature of P(MV–BA)/MXene nanocomposite miniemulsion-coated leather (PML) increased by about 15 °C in an outdoor environment during winter, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100% under the simulated sunlight treatment for 30 min. Moreover, the introduction of MXene nanosheets increased the air permeability, water vapor permeability, and thermal stability of these coatings. This study provides a new insight into the preparation of novel, green, and waterborne bio-based nanocomposite coatings for leather, with desired warmth retention and antibacterial properties. It can not only realize zero-carbon heating based on sunlight in winter, reducing the use of fossil fuels and greenhouse gas emissions, but also improve ability to fight off invasion by harmful bacteria, viruses, and other microorganisms.

关键词: MXene nanosheets     Vanillin     Styrene substitute     Leather coating     Photothermal conversion     Warmth retention     Antibacterial properties    

Recent progress in the design and fabrication of MXene-based membranes

Kai Qu, Kang Huang, Zhi Xu

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 820-836 doi: 10.1007/s11705-020-1997-7

摘要: Two-dimensional membranes have attracted significant attention due to their superior characteristics, and their ability to boost both flux and selectivity have led to their reputation as potential next-generation separation membranes. Among them, emerging MXene-based membranes play significant roles in the competitive membrane-separation field. In this mini-review, we systematically discuss the assembly and separation mechanisms of these membranes. Moreover, we highlight strategies based on the crosslinking of MXene nanosheets and the construction of additional nanochannels that further enhance the permeabilities and anti-swelling properties of MXene-based membranes and meet the requirements of practical applications, such as gas-molecule sieving, ion sieving, and other small-molecule sieving. MXene nanosheets can also be used as additives that introduce specific functionalities into hybrid membranes. In addition, extended applications that use MXenes as scaffolds are also discussed.

关键词: MXene     2D materials     membranes     separation    

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 420-432 doi: 10.1007/s11705-021-2065-7

摘要: Production cost, capacitance, and electrode materials safety are the key factors to be concerned about for supercapacitors. In this work, a type of carbon nanosheets was produced through the carbonization of tripotassium citrate monohydrate and nitric acidification. Subsequently, a well-designed manganese dioxide/carbon nanosheets composite was synthesized through hydrothermal treating. The carbon nanosheets served as the substrate for growing the manganese dioxide, regulating its distribution, and preventing it from inhomogeneous dimensions and severe agglomeration. Many manganese dioxide nanosheets grew vertically on the numerous functional groups generated on the surface of the carbon nanosheets during acidification. The synergistic combination of carbon nanosheets and manganese dioxide tailors the electrochemical performance of the composite, which benefits from the excellent conductivity and stability of carbon nanosheets. The carbon nanosheets derived from tripotassium citrate monohydrate are conducive to the remarkable performance of manganese dioxide/carbon nanosheets electrode. Finally, an asymmetric supercapacitor with active carbon as the cathode and manganese dioxide/carbon nanosheets as the anode was assembled, achieving an outstanding energy density of 54.68 Wh·kg–1 and remarkable power density of 6399.2 W·kg–1 superior to conventional lead-acid batteries. After 10000 charge-discharge cycles, the device retained 75.3% of the initial capacitance, showing good cycle stability. Two assembled asymmetric supercapacitors in series charged for 3 min could power a yellow light emitting diode with an operating voltage of 2 V for 2 min. This study may provide valuable insights for applying carbon materials and manganese dioxide in the energy storage field.

关键词: carbon nanosheets     manganese dioxide     asymmetric supercapacitors     energy density     power density    

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1755-1764 doi: 10.1007/s11705-023-2318-8

摘要: Owing to the complexity of electron transfer pathways, the sluggish oxygen evolution reaction process is defined as the bottleneck for the practical application of Zn–air batteries. In this effort, metal nanoparticles (Co, Ni, Fe, etc.) encapsulated within nitrogen-doped carbon materials with abundant edge sites were synthesized by one-step pyrolysis treatment using cigarette butts as raw materials, which can drastically accelerate the overall rate of oxygen evolution reaction by facilitating the adsorption of oxygenated intermediates by the edge-induced topological defects. The prepared catalyst of nitrogen-doped carbon porous nanosheets loaded with Co nanoparticles (Co@NC-500) exhibits enhanced catalytic activity toward oxygen evolution reaction, with a low overpotential of 350 mV at the current density of 10 mA·cm–2. Furthermore, the Zn–air battery assembled with Co@NC-500 catalyst demonstrates a desirable performance affording an open-circuit potential of 1.336 V and power density of 33.6 mW·cm–2, indicating considerable practical application potential.

关键词: oxygen evolution reaction     porous carbon nanosheets     Co nanoparticles     edge-induced topological defects     Zn–air batteries    

NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1698-1706 doi: 10.1007/s11705-023-2334-8

摘要: The electrocatalyst NiFeRuOx/NF, comprised of NiFeRuOx nanosheets grown on Ni foam, was synthesized using a hydrothermal process followed by thermal annealing. NiFeRuOx/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting: 98 mV@ 10 mA∙cm−2 in hydrogen evolution reaction, 318 mV@ 50 mA∙cm−2 in oxygen evolution reaction, and a cell voltage of 1.53 V@ 10 mA∙cm−2, as well as 20 h of durability. A solar-driven system containing such a bifunctional NiFeRuOx/NF has an almost 100% Faradaic efficiency. The NiFeRuOx coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances.

关键词: NiFeRuOx nanosheets     Ni foam     electrocatalysis     overall seawater splitting     solar-driven system    

Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1601-8

摘要:

● Electroconductive RGO-MXene membranes were fabricated.

关键词: Reduced graphene oxide     MXene     Membrane     Water permeance     Dye rejection     Electro-assistance    

Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient

《化学科学与工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11705-023-2378-9

摘要: In this study, we synthesize a catalyst comprising cobalt nanoparticles supported on MXene by pyrolyzing a composite in a N2 environment. Specifically, the composite comprises a bimetallic Zn/Co zeolitic imidazole framework grown in situ on the outer surface of MXene. The catalytic efficiency of the catalyst is tested for the self-coupling of 4-methoxybenzylamine to produce value-added imine, where atmospheric oxygen (1 atm) is used as the oxidant. Based on the results, the catalyst displayed impressive catalytic activity, achieving 95.4% yield of the desired imine at 383 K for 8 h. Furthermore, the catalyst showed recyclability and tolerance toward benzylamine substrates with various functional groups. The outstanding performance of the catalyst is primarily attributed to the synergetic catalytic effect between the cobalt nanoparticles and MXene support, while also benefiting from the three-dimensional porous structure. Additionally, a preliminary investigation of potential reaction mechanisms is conducted.

关键词: MXene     sacrificial template     oxidative self-coupling     Co nanoparticles     imine    

Regularly channeled MXene membranes for ionic and molecular separation

Jingchong Liu, Nü Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 591-594 doi: 10.1007/s11705-020-1966-1

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1460-1469 doi: 10.1007/s11705-023-2335-7

摘要: Electromagnetic interference pollution has raised urgent demand for the development of electromagnetic interference shielding materials. Transition metal carbides (MXenes) with excellent conductivity have shown great potential in electromagnetic interference (EMI) shielding materials, while the poor mechanical strength, flexibility, and structural stability greatly limit their further applications. Here, cellulose nanofibers and sodium alginate are incorporated with MXene nanosheets as flexible matrices to construct strong and flexible mussel-like layered MXene/Cellulose nanofiber/Sodium Alginate composite films, and nickel ions are further introduced to induce metal coordination crosslinking of alginate units. Benefited from the dual-crosslinked network structure of hydrogen bonding and metal coordination, the tensile strength, Young’s modulus, and toughness of the MXene/cellulose nanofiber/nickel alginate composite film are significantly increased. After subsequent reduction by ascorbic acid, excess nickel ions are reduced to nickel nanoparticles and uniformly dispersed within the highly conductive composite film, which further improved its hysteresis loss effect toward the incident electromagnetic waves. Consequently, the MXene/cellulose nanofiber/nickel alginate-Ni composite film presents a considerably enhanced electromagnetic interference shielding effectiveness (47.17 dB) at a very low thickness of 29 μm. This study proposes a feasible dual-crosslinking and subsequent reduction strategy to synergistically enhance the mechanical properties and electromagnetic interference shielding performance of MXene-based composite materials.

关键词: Ti3C2Tx MXene     double crosslinking     mechanical properties     EMI shielding performance    

Mercury removal from aqueous solution using petal-like MoS2 nanosheets

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1307-0

摘要: Abstract • Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.

关键词: Anionic surfactant     2D material     MoS2 nanosheets     Mercury removal     Adsorption capacity    

Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics

Mohammad SALAVATI, Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 623-631 doi: 10.1007/s11709-020-0616-5

摘要: In this work we conducted classical molecular dynamics (MD) simulation to investigate the mechanical characteristics and failure mechanism of hexagonal boron-nitride (h-BN) nanosheets. Pristine and defective structure of h-BN nanosheets were considered under the uniaxial tensile loadings at various temperatures. The defective structure contains three types of the most common initial defects in engineering materials that are known as cracks, notches (with various length/size), and point vacancy defects (with a wide range of concentration). MD simulation results demonstrate a high load-bearing capacity of extremely defective (amorphized) h-BN nanosheets. Our results also reveal that the tensile strength decline by increasing the defect content and temperature as well. Our MD results provide a comprehensive and useful vision concerning the mechanical properties of h-BN nanosheets with/without defects, which is very critical for the designing of nanodevices exploiting the exceptional physics of h-BN.

关键词: hexagonal boron-nitride     mechanical properties     crack     notch     point defects     molecular dynamics    

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 882-891 doi: 10.1007/s11705-020-1990-1

摘要: Hydrogen fuel has been embraced as a potential long-term solution to the growing demand for clean energy. A membrane-assisted separation is promising in producing high-purity H . Molecular sieving membranes (MSMs) are endowed with high gas selectivity and permeability because their well-defined micropores can facilitate molecular exclusion, diffusion, and adsorption. In this work, MXene nanosheets intercalated with Ni were assembled to form an MSM supported on Al O hollow fiber via a vacuum-assisted filtration and drying process. The prepared membranes showed excellent H /CO mixture separation performance at room temperature. Separation factor reached 615 with a hydrogen permeance of 8.35 × 10 mol·m ·s ·Pa . Compared with the original Ti C T /Al O hollow fiber membranes, the permeation of hydrogen through the Ni -Ti C T /Al O membrane was considerably increased, stemming from the strong interaction between the negatively charged MXene nanosheets and Ni . The interlayer spacing of MSMs was tuned by Ni . During 200-hour testing, the resultant membrane maintained an excellent gas separation without any substantial performance decline. Our results indicate that the Ni tailored Ti C T /Al O hollow fiber membranes can inspire promising industrial applications.

关键词: MXene     H2/CO2 separation     nickel ions     hollow fiber    

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 948-955 doi: 10.1007/s11705-020-1920-2

摘要: Cobalt hydroxide has been emerging as a promising catalyst for the electrocatalytic oxidation reactions, including the oxygen evolution reaction (OER) and glucose oxidation reaction (GOR). Herein, we prepared cobalt hydroxide nanoparticles (CoHP) and cobalt hydroxide nanosheets (CoHS) on nickel foam. In the electrocatalytic OER, CoHS shows an overpotential of 306 mV at a current density of 10 mA·cm . This is enhanced as compared with that of CoHP (367 mV at 10 mA·cm ). In addition, CoHS also exhibits an improved performance in the electrocatalytic GOR. The improved electrocatalytic performance of CoHS could be due to the higher ability of the two-dimensional nanosheets on CoHS in electron transfer. These results are useful for fabricating efficient catalysts for electrocatalytic oxidation reactions.

关键词: electrocatalytic oxidation     cobalt hydroxide     nanosheet     water     glucose    

在光纤激光器中利用Ti3C2 MXene材料产生矢量孤子和类噪声脉冲 Research

王帅1,李雷1,宋宇峰2,唐定远3,沈德元1,赵鹭明1,4

《信息与电子工程前沿(英文)》 2021年 第22卷 第3期   页码 287-436 doi: 10.1631/FITEE.2000033

摘要: 本文利用Ti3C2 MXene材料作为可饱和吸收体,搭建了铥钬共掺光纤激光器,观察到矢量孤子和类噪声脉冲的形成。其中,可饱和吸收体是通过将Ti3C2溶液滴在侧面抛光的D形光纤上自然挥发后制备而成。据我们所知,这是首次利用Ti3C2 MXene材料作为可饱和吸收体从光纤激光器中获得矢量孤子。

关键词: 矢量孤子;类噪声脉冲;MXene;光纤激光器    

标题 作者 时间 类型 操作

Toughening of vinyl ester resins by two-dimensional MXene nanosheets

期刊论文

Bio-based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention

Jianzhong Ma,Li Ma,Lei Zhang,Wenbo Zhang,Qianqian Fan,Buxing Han,

期刊论文

Recent progress in the design and fabrication of MXene-based membranes

Kai Qu, Kang Huang, Zhi Xu

期刊论文

Tripotassium citrate monohydrate derived carbon nanosheets as a competent assistant to manganese dioxide

期刊论文

“Charging” the cigarette butt: heteroatomic porous carbon nanosheets with edge-induced topological defects

期刊论文

NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient

期刊论文

Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability

期刊论文

Cobalt-nanoparticle catalysts derived from zeolitic imidazolate framework@MXene composites for efficient

期刊论文

Regularly channeled MXene membranes for ionic and molecular separation

Jingchong Liu, Nü Wang

期刊论文

Dual cross-linked MXene/cellulose nanofiber/nickel alginate film with improved mechanical properties

期刊论文

Mercury removal from aqueous solution using petal-like MoS2 nanosheets

Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar

期刊论文

Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics

Mohammad SALAVATI, Arvin MOJAHEDIN, Ali Hossein Nezhad SHIRAZI

期刊论文

Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation

Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu

期刊论文

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan

期刊论文

在光纤激光器中利用Ti3C2 MXene材料产生矢量孤子和类噪声脉冲

王帅1,李雷1,宋宇峰2,唐定远3,沈德元1,赵鹭明1,4

期刊论文